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Two of the factors limiting progress in understanding the mechanisms of visual search are the difficulty of controlling and
manipulating the retinal stimulus when the eyes are free to move and the lack of an ideal observer theory for fixation
selection during search. Recently, we developed a method to precisely control retinal stimulation with gaze-contingent
displays (J. S. Perry & W. S. Geisler, 2002), and we derived a theory of optimal eye movements in visual search
(J. Najemnik & W. S. Geisler, 2005). Here, we report a parametric study of visual search for sine-wave targets added to
spatial noise backgrounds that have spectral characteristics similar to natural images (the amplitude spectrum of the noise
falls inversely with spatial frequency). Search time, search accuracy, and eye fixations were measured as a function of
target spatial frequency, 1/f noise contrast, and the resolution falloff of the display from the point of fixation. The results are
systematic and similar for the two observers. We find that many aspects of search performance and eye movement pattern
are similar to those of an ideal searcher that has the same falloff in resolution with retinal eccentricity as the human visual
system.
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Introduction

For humans and other primates, there are few perceptual
tasks more fundamental than visual search, which is
performed almost continuously during waking hours and
is essential for locating and interacting with objects,
places, and other organisms. To perform visual search,
the visual system implements an elegant compromise
between the competing goals of maximizing field of view,
maximizing spatial resolution, and minimizing neural
resources: It encodes a large field of view with a retina
having variable spatial resolution and then uses high-
speed eye movements to direct the highest resolution
region of the retina (the fovea) at potential target locations
in the visual scene. In human visual search, eye
fixations have a duration averaging 200 –300 ms.
During each of these fixations, detection and identification
processes are applied across the visual field, and eye
movements to subsequent fixation locations are planned
and programmed.
Although the generic form of visual search in the

normal environment involves multiple fixations, most
research has focused on response-time tasks designed so
that the number of fixations is minimal (e.g., see Wolfe,
1998) or on single-fixation tasks, where stimuli are
presented briefly so that only a single fixation is possible

(e.g., see Palmer, Verghese, & Pavel, 2000; Verghese,
2001) The single-fixation task has the advantages of
allowing relatively easy control over eccentricity effects,
of reducing the need to measure eye movements, and of
facilitating the study of covert selection. However, the
single-fixation task is relatively unnatural and provides
little information on some important aspects of visual
search: planning and programming of eye movements
(fixation selection), and integration of information across
successive fixations.
Fixation eye movements in visual search tasks are

complex and depend on the information collected across
the visual field during search, as well as on the observer’s
prior knowledge of the task and stimuli (for a review, see
Findlay & Gilchrist, 2003). For example, (1) If a target is
highly visible, then observers tend to make a saccade
directly toward the target (Eckstein, Beutter, & Stone,
2001; Findlay, 1997), but under more difficult conditions,
observers may fixate some average location within a
group of possible target locations (Findlay, 1997; He &
Kowler, 1989; Zelinsky, Rao, Hayhoe, & Ballard, 1997);
(2) The duration of fixations during visual search tends to
increase as the discriminability of the target from back-
ground decreases (Hooge & Erkelens, 1999; Jacobs &
O’Regan, 1987); (3) The Bclassification image[ technique
(Beard & Ahumada, 1998) applied to visual search for
targets in noise shows that the eye is attracted (at least
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some of the time) to features in the noise that match
features of the target (Rajashekar, Cormack, & Bovik,
2002). The clear implication of these and other studies
(e.g., Engel, 1977; Geisler & Chou, 1995; Motter &
Belky, 1998; Zelinsky, 1996) is that if we are to under-
stand multiple-fixation visual search, then we need to
understand what information is being extracted from the
periphery during search and how it is being used to guide
the sequence of eye movements.
The role of peripheral information in multiple-fixation

search is not easy to study because of the difficulty of
controlling the stimulus on the retina during a sequence of
eye movements. A powerful technique to solve this
problem is to update the visual display frame-by-frame,
contingent on the observers’ eye position, as measured
with an eye tracker. The earliest use of such Bgaze-
contingent displays[ was to stabilize images on the retina
(Riggs, Ratliff, Cornsweet, & Cornsweet, 1953; Yarbus,
1967). The most productive use of gaze-contingent
displays has been in the study of reading (for a review,
see Rayner, 1998). For example, McConkie & Rayner
(1975), and similar subsequent studies, found that normal
reading is achieved with about 14–15 letter spaces to the
right of fixation and about 3–4 letters to the left of fixation.
Gaze-contingent display techniques can provide similar

information for other complex tasks that involve eye
movements, such as visual search. For example, Loschky
& McConkie (2002) investigated visual search in natural
scene images using a gaze-contingent display with two
levels of resolution and found that shrinking the window
of high resolution produced longer search times, more
fixations, shorter saccade lengths, and longer fixation
durations. Similar results were obtained by Kortum and
Geisler (1996a, 1996b) using a display where pixel size
increases with distance from the point of fixation. A
limitation of these studies is that display resolution jumps
in discrete steps rather than smoothly dropping off, a
common problem in early gaze-contingent display sys-
tems (Juday & Fisher, 1989; Warner, Serfoss, & Hubbard,
1993; Weiman, 1990).
Recently, there has been considerable effort to improve

gaze-contingent displays (for reviews, see Duchowski,
Cournia, & Murphy, 2004; Parkhurst & Niebur, 2002;
Reingold, Loschky, McConkie, & Stampe, 2003). As part
of this effort, we developed software that runs on standard
PCs and that is able to produce artifact-free, gaze-
contingent displays at update rates of 40–60 Hz (Geisler &
Perry, 1998; Perry & Geisler, 2002).
Here, we describe experiments where this software was

used to measure how peripheral information is used
during visual search for sine-wave targets (Gabor patches)
embedded in broadband noise whose amplitude spectrum
falls off inversely with frequency (1/f noise). We varied
the spatial frequency of the target, the contrast of the noise
background, and the rate of falloff in display resolution
from the point of gaze. Our aims were to obtain a broad
picture of search performance under naturalistic condi-

tions and to obtain an estimate of how much information
can be removed from the periphery without affecting eye
movement patterns or search time. Najemnik and Geisler
(2005) showed that modest differences in peripheral
detection sensitivity across stimulus conditions can sub-
stantially affect search time; thus, our expectation was that
mild reductions in peripheral resolution would signifi-
cantly increase search time.
There are several reasons for measuring search perfor-

mance in 1/f noise. First, the Fourier amplitude spectra of
natural images fall off approximately as 1/f (Burton &
Moorehead, 1987; Field, 1987), and thus, searching for
targets in 1/f noise should be representative, in at least
some ways, of search in the natural environment. Second,
there is substantial literature concerning the detection and
identification of targets in broadband noise; this literature
provides a solid foundation for understanding search
performance in broadband noise (Burgess, Wagner,
Jennings, & Barlow, 1981; Lu & Dosher, 1999; Pelli &
Farell, 1999). Third, it is possible to derive an ideal
observer theory of visual search for targets in broadband
noise (Najemnik & Geisler, 2005); this ideal searcher
provides the appropriate benchmark against which to
compare real performance and a useful starting point for
proposing realistic (suboptimal) models of visual search.

Methods

Search performance and fixation patterns were measured
for a sine-wave target randomly located in a 1/f noise
background, as a function of target spatial frequency,
noise contrast, and the rate of falloff in display resolution
from the fixation location. There were two observers with
normal vision; one was an author while the other was
naive to the aims of the study.

Stimuli

Eight-bit gray-scale images were displayed on a
calibrated monitor (Phillips Brilliance 21A) that was set
to a resolution of 640 � 480 pixels at 60 Hz noninterlaced
and placed at a distance of 120 cm from the eyes. The
target stimuli were one-octave Gabor patterns (in sine
phase) tilted 45 deg to the left. Four target spatial
frequencies were tested: 1, 2, 4, and 6 cpd. The root-
mean-square (rms) contrast of the target was fixed at 0.35.
The background was a circular region 13 deg (400

pixels) in diameter, filled with noise having an amplitude
spectrum that declined inversely with spatial frequency
(i.e., 1/f noise); the remaining display pixels were set to
the mean luminance (20 cd/m2). The 1/f noise was created
by filtering white noise, truncating the waveform at T2 SD,
scaling to obtain the desired rms amplitude and then
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adding a constant to obtain the mean luminance. Four
noise contrast levels were tested: 0.25, 0.125, 0.0625, and
0.03125 rms.
On each search trial, the target was placed at a different

random location within the circular noise background;
however, the target center was not allowed to fall within
40 pixels of the edge of the background. A different random
sample of 1/f noise was displayed on each search trial.
Gaze-contingent displays were generated using the

method described in Perry & Geisler (2002). The
algorithm takes as input an arbitrary video sequence, a
gaze location provided by the output of an eye tracker,
and an arbitrary real-valued two-dimensional map that
specifies the desired display resolution at each eccentricity
and direction from the current gaze location.

To create the gaze-contingent displays, the following
operations were performed in real time, on each video
frame: (1) Obtain an input image (in this case the same
image for each video frame of the search trial). (2)
Compute a multiresolution Gaussian pyramid representa-
tion of the input image (typically six to seven levels deep).
The solid curves in Figure 1A show the transfer functions
associated with the first three levels of the Gaussian
pyramid. (3) Obtain the current gaze direction from the
eye tracker. (4) Shift the resolution map to align with the
current gaze direction. (5) Up-sample and interpolate
the multiresolution pyramid using the shifted resolution
map. (6) Display the output image. (7) Go to Step 1. The
software that performs these operations runs on a standard
PC and is available in either C++ or MatLab, from the
authors or from the web site http://www.svi.cps.utexas.edu/.
The transfer function associated with the jth level of the

Gaussian pyramid is given by

Tj fð Þ ¼ exp j0:5
2j f

A0

� �2
 !

; ð1Þ

where f is spatial frequency in cycles per degree, A0 =
0.248wpix/wdeg, wpix is the width of the display in pixels,
and wdeg is the width of the display in degrees. The half-
height resolution of the jth level of the Gaussian pyramid
is rj ¼ A0

ffiffiffiffiffiffiffiffiffi
2ln2

p
=2j. The horizontal blue line in Figure 1A

intersects the pyramid transfer functions at their half-
height resolution (thus, half-height resolution is also in
units of cycles per degree). The dashed black curve in
Figure 1A is the hypothetical transfer function obtained
when j = 0 in Equation 1. We use this transfer function for
interpolation between the original image and the first
level of the pyramid. In effect, we are assuming that the
original image is the first level in a Gaussian pyramid for
an image with twice the resolution of the original image.
This trick keeps the interpolation procedure between the
original image (Level 0) and Level 1 of the pyramid
consistent with the interpolation procedure between other
neighboring levels of the pyramid (e.g., between Levels 1
and 2).
The local transfer function at an arbitrary interpolated

resolution, r, is given by

T f ; rð Þ ¼

0:5jTjþ1 rð Þ
� �

Tj fð Þj 0:5jTj rð Þ
� �

Tjþ1 fð Þ
Tj rð ÞjTjþ1 rð Þ ;

rjþ1G r e rj

0:5jT1 rð Þ½ �j 0:5jT0 rð Þ½ �T1 fð Þ
T0 rð ÞjT1 rð Þ :

r1 G r e r0

8>>>>>>>><
>>>>>>>>:

ð2Þ

Figure 1. Creation of gaze-contingent displays. (A) Transfer
functions for the first three levels of the multiple-resolution
Gaussian pyramid. The dashed red curve shows the transfer
function associated with a particular interpolation between Pyr-
amid Levels 1 and 2. T0 is a hypothetical transfer function used for
interpolation between the original image and the first level of the
pyramid. The horizontal blue line intersects the transfer functions
at the half-height resolution, r((). (B) Relative resolution maps,
r(()/r0, used in the present experiment; the parameter (2 is the
eccentricity where display resolution reaches one half of the
maximum value.
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For example, see the dashed red curve in Figure 1A. In
other words, this equation precisely specifies the local
transfer function that is applied to the original image at
each pixel, for any display resolution r desired at that
pixel location.
Figure 1B shows cross sections of the radially sym-

metric resolution maps used in this study. The relative
display resolution was highest at the point of fixation and
declined smoothly away from that point according to the
function,

r (ð Þ
r0

¼ (2
(2 þ (

; ð3Þ

where (2 is the eccentricity (in degrees) at which the
display resolution drops to one half of its value at the
fixation point. The value of (2 controls the rate of falloff in
display resolution; the smaller the value of (2, the faster

the rate of falloff. Six values of (2 were tested: 2, 4, 6, 8,
12, and 16 deg.
The falloff in display resolution created using Equation 2

is similar in shape to the falloff in resolution of the human
visual system (see, e.g., Geisler & Perry, 1998; Wilson,
Levi, Maffei, Rovamo, & DeValois, 1990). The half-
resolution constant of the human visual system (e2) is in
the range of 2.0 – 2.5 deg. Thus, the most rapid falloff of
display resolution in our experiment is only slightly more
rapid than the falloff in resolution of the visual system.
However, it is important to keep in mind that the display
resolution combines multiplicatively with visual resolu-
tion. For example, if (2 is set equal to e2, then at an
eccentricity of 2–2.5 deg, the total effective resolution is
reduced by a factor of 4 rather than a factor of 2.
Figure 2A illustrates the appearance of a display ((2 =

4 deg, background contrast = 0.25 rms, target frequency =
6 cpd) when fixation is to the right and below the center of
the display. Figure 2B illustrates the appearance of the
same display when the fixation is on the target. The insets
show enlargements of the region containing the target.
In almost all conditions, eye positions were sampled

and the display was updated at a rate of 60 times per
second; however, a few conditions (the largest values
of (2) required greater image processing, and thus, the
update rate was only 45 times per second. However, these
differences had no noticeable effect on the display because
the display frame rate always remained at 60 Hz non-
interlaced. For more details, see Perry and Geisler (2002).
This subjective impression is consistent with a recent
gaze-contingent, blur-detection experiment (Loschky &
McConkie, 2005).
Gaze direction was measured with an SRI version-6

dual Purkinje eye tracker. Head position was maintained
with a bite bar and heavy-duty headrest. The algorithm
that was used to compute fixation points from eye
positions was a modified version of one in the Applied
Science Laboratories Series 5000 data-analysis software
(see Appendix A). Observers were allowed to blink
between search trials. Loss of tracking occurred very
infrequently, and there were no noticeable eye-tracking
artifacts during the search trials.

Procedure

Two 30-trial blocks of search trials were run for each of
the 96 stimulus conditions (4 target spatial frequencies �
4 background noise contrasts � 6 (2 values). One block
was run for each of the 96 stimulus conditions, then, after
all 96 conditions were completed, the second block was
run for each of the 96 conditions, but the order of
conditions was reversed. The observer knew the target
spatial frequency, background noise contrast, and value of
(2 in each block.
Prior to each 30-trial block, the observer was required

to execute a 9-fixation-point calibration procedure. In

Figure 2. Gaze-contingent display during search task. The
stimulus consisted of a Gabor patch target added to a 13 deg
background of 1/f noise. (A) Gaze-contingent display when
fixation is in lower right (white plus sign). (B) Gaze-contingent
display when fixation is on the target in the upper left. Insets show
enlargements of the region containing the target.
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addition, after each trial, a gaze-location marker appeared.
If this marker was not within close tolerance of the central
fixation dot (which the observer was trying to fixate), the
observer was given the opportunity to run the calibration
procedure again (this rarely occurred).
Each search trial began with the observer keeping

fixation on a central dot in a uniform field at mean
luminance. When the observer was ready, he or she
pushed a response key, which caused the fixation dot and
gaze direction marker to disappear. After a random time
delay of 500–1,500 ms, the search display appeared; this
was done to reduce any temptation to make anticipatory
responses in the easy blocks. The instructions were for the
observer to find the target as quickly as possible without
making errors. As soon as the observer identified the
target location, he or she pressed the response key, which
determined the search time. The observer then fixated the
identified target location and pressed the response key
again. To be counted as a correct response, the gaze
direction at the time of this second press had to be within
1 deg of the actual target location (thus, the probability of
being correct by chance was approximately 2.5%). After
the observer responded, the true location of the target was
indicated with a small dot. Finally, the uniform field with
the central fixation dot and gaze direction marker
reappeared.

Ideal observer analysis

To facilitate interpretation of the data, we compared the
measured search performances and fixation patterns with
those of a Bayesian ideal searcher, which is described in
detail elsewhere (see Najemnik & Geisler, 2005 and the
supplement to that publication). Briefly, we derived the
ideal searcher for a task where a known target is located
randomly in a field of spatial noise. We assumed that
there are n possible nonoverlapping target locations and
that the searcher’s goal is to find the target as quickly as
possible, with the constraint that the average target
localization accuracy exceeds some particular criterion
value.
The ideal search strategy is as follows. The searcher

begins with fixation in the center of the display, and it
assumes that all target locations are equally probable
(which they were in the experiment). These initial
probabilities across the possible target locations are, in
Bayesian terminology, the Bprior probabilities.[ At the
onset of the search display, the searcher collects
matched-template responses in parallel from all possible
target locations while fixating the center of the search
area. The searcher is given the same visibility map
(detection sensitivity across the visual field) as the
human observer, and thus, the template responses in the
fovea are generally more informative than those in
the periphery. The searcher uses the responses encoded
during this first fixation to compute the Bposterior

probability[ of the target being at each of the possible
target locations. If the maximum of these posterior
probabilities exceeds a criterion (e.g., 95%), then the
search is stopped and the location where the posterior
probability exceeded the criterion is reported. If the
criterion is not exceeded, the searcher computes (using
the current posterior probabilities and knowledge of its
own visibility map) the fixation location that will
maximally increase the likelihood of correctly identify-
ing the target location after the eye movement is made.
The optimal next fixation location is not necessarily the
location with the highest posterior probability because it
is often possible to gain more information by fixating
elsewhere (e.g., the centroid of several locations
with high posterior probabilities). After making the
optimal eye movement, the ideal searcher again
collects responses in parallel, updates the posterior
probabilities, compares them to the criterion, and so
on. The cycle repeats until the stopping criterion is
exceeded.
The performance of the ideal searcher depends critically

upon the retinotopic map of the detectability of the target
in the background (visibility map), which we express in
terms of a signal-to-noise ratio (d ¶). Najemnik & Geisler
(2005) measured the visibility maps of two observers, for
a 6-cpd sine-wave target, as a function of target contrast,
eccentricity, and 1/f noise contrast. They also found that
modest changes in the maps had substantial effects on
ideal search performance. Unfortunately, it was not
practical to directly measure the visibility maps for the
large number of conditions in this study.
However, it was possible to carry out an approximate

ideal observer analysis for the 6-cpd conditions using the
previously measured maps. This is justified because
W.S.G. was an observer in both studies, because the
maps were very similar for the two observers in the
previous study, and because both observers in this study
performed similarly. The predictions for the other con-
ditions are likely to be less accurate. Here, we also
generate predictions for the other conditions by extrap-
olating from the 6-cpd maps, using published facts in the
psychophysical literature; however, these predictions
must be viewed as more approximate (see Appendix B).
Our aim here is not to obtain rigorous measures of
efficiency but to get a semiquantitative picture of the
search behavior expected from a rational search strategy
(see Discussion).
It is important to note that although template matching

is the ideal detection mechanism for targets in Gaussian
noise, the formal assumption of template matching has
little effect on the ideal search performance reported here.
The reason is simply that we separate the model of target
detection from the search model by estimating the
visibility maps for each target and noise contrast from
empirical measurements. In other words, the search
predictions are largely the same no matter what neural
mechanisms give rise to the visibility maps. The only way
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that ideal template matching enters the predictions is in
estimating the ratio of external to internal noise level,
which has a modest effect on the predictions (see
Appendix B).

Results

Figure 3 shows a typical sequence of eye movements
during a search trial. The plus signs show the fixation
points, and time is coded by color (blue = beginning, red =
end). Note that the scan path is drawn on the unfoveated
image; during the actual trial, the display was foveated in
a gaze-contingent fashion.
Figure 4 shows the mean search times for correct

responses measured from the two observers, where each
mean is based on 60 trials. Each panel plots search time as
a function of the rate of falloff in display resolution with
retinal eccentricity, for one target spatial frequency, at
each of the four levels of background contrast. Recall that
the rms contrast of the one-octave Gabor target was fixed
at 0.35. As can be seen, the data are very systematic;
search time increases with target spatial frequency, with
background contrast, and with the rate of falloff in display
resolution from the point of gaze (lower values of (2
correspond to higher rates of falloff in display resolution;
see Figure 1). Figure 5 plots the error rates, which were
generally low except for the hardest search conditions
(high target spatial frequency, high background contrast,
and small display half-resolution).

Figure 3. Example fixation sequence in the visual search task.
Each plus sign represents a fixation. Time is coded by the color of
the scan path (blue = beginning, red = end).

Figure 4. Mean search time for correct responses as a function of the falloff in display resolution, contrast of noise background, and the
spatial frequency of the Gabor target. Each point is based upon 60 search trials. Circles, M.E.W.; triangles, W.S.G.; curves, average of the
two observers.
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Interestingly, the shape of the function describing
search time as a function of the falloff in display
resolution is approximately invariant with background
contrast. This can be seen more easily in Figure 6, where
the curves in each panel of Figure 4 have been scaled to
the mean. This was done by scaling each curve (i.e.,
translating on the log axis) to the mean search time for
that spatial frequency.
Examination of the 6-cpd data in Figure 6 shows that

half-resolution eccentricities of 6–8 deg produce a reliable
increase in search time. These are quite mild attenuations
of display resolution and are often subjectively unnoticed
when performing the task because of the human visual
system’s reduced resolution in the periphery. The fact that
there is an effect at all suggests a rather subtle use of
peripheral information in search.
Search time can vary either because of changes in the

number of fixations, changes in the duration of the
fixations, or both. Figure 7 plots the number of fixations
corresponding to the search times in Figure 4. (In counting
fixations, we assumed that button presses occurring less
than 125 ms following the onset of the last saccade were
initiated before the last saccade, and hence, in these cases,
the final fixation was not counted.) The median numbers
of fixations vary from 1 to more than 10, and the overall

pattern mirrors that of average search time quite closely.
In fact, there is an almost-perfect linear relationship
between the average number of fixations and the average
search time (r = .996 for M.E.W.; r = .998 for W.S.G.).
There is also a clear, but weaker, relationship between

fixation duration and search timeVthe greater the search
time, the greater the fixation duration (r = .91). Thus,
search time varies across the various stimulus conditions
both because of the number of fixations and because of the
duration of the fixations. However, the dominant factor
tends to be the number of fixations. This can be seen in
Figure 8A, which plots average fixation duration as a
function of average number of fixations to find the target,
for all 96 stimulus conditions, for both observers. The
fixation durations vary by a factor of approximately 1.5
(from about 200 ms to a little more than 300 ms), whereas
the number of fixations varies by a factor of approx-
imately 10.
There are several other strong relationships in the eye

movement statistics. Figure 8B plots the average distance
of the fixation points from the center of the display as a
function of the average number of fixations. Given that
fixation begins at the center of the display, it is not
surprising that the average distance of the fixations from
the center increases with number of fixations, but the

Figure 5. Error rates in search experiment. Circles, M.E.W.; triangles, W.S.G.; curves, average of the two observers. Chance performance
is approximately 2.5% correct.
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relationship is very systematic. Figure 8C plots the
variance in the number of fixations as a function of the
average number of fixations. The variance increases
strongly with the number of fixations; the relationship is
described approximately by a power function with an
exponent of 2–3. Figure 8D plots average saccade length
as a function of the average number of fixations. As the
number of fixations increases (i.e., as the task gets more
difficult), the average saccade length tends to decrease;
however, the correlation is relatively weak.

Discussion

There were two major aims of this study. The first was
to obtain a parametric picture of human performance in a
naturalistic visual search task by recording eye move-
ments and target localization responses while observers
searched for Gabor targets in 1/f noise (which has the
amplitude spectrum typical of natural images). The second
aim was to examine the role of the peripheral visual field
in visual search by systematically manipulating peripheral
spatial information using gaze-contingent display
technology.

In general, we obtained very systematic results for the
two observers, and although there were some individual
differences in performance and in eye movement statistics,
one is struck more by the similarities than the differences.
This fact and the similarity in search performance for the
two observers in Najemnik & Geisler (2005) suggest that
the findings reported here are robust.
The finding that search time and number of fixations

both increase with spatial frequency, noise contrast, and
the falloff in display resolution with eccentricity agrees
with common sense expectation and with the existing
search literature. However, there are some quantitative
properties that are not so intuitive. One clear property is
that the shape of the search time functions approximately
scales with the power of the 1/f noise (i.e., they are
approximately parallel on a logarithmic axis; see
Figure 6). This result also holds for number of fixations,
which is not surprising given the very high correlation
(.997) between search time and number of fixations in this
study. A second property is that search times (and number
of fixations) tend to jump up rather more sharply when the
contrast increases from 0.125 to 0.25 than for the other
steps in contrast (see Figures 4 and 7). A third property is
that for the 1- and 2-cpd targets, increasing the back-
ground contrast causes an increase in the number of

Figure 6. Average search times for correct responses from Figure 4, scaled to compare shapes. Each point is the combined data from the
two observers. Each curve within a panel was scaled separately to best fit the average curve (the average curve is not shown).
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fixations, yet varying the rate of falloff in display
resolution does not (i.e., search time is flat as a function
of (2, yet increases with background noise contrast).
One way to gain insight into these quantitative proper-

ties is to consider what would be expected of an ideal
searcher that optimally processes the display in parallel on
each fixation and that optimally selects successive fixation
locations. The solid curves in Figure 9 show the simulated
(parameter free) performance of an ideal searcher that is
constrained with approximately the same visibility map
(detection sensitivity across the retina) as the human
observers. The symbols are the average data for the two
observers. Like the human search functions, the ideal
search functions are roughly parallel on a logarithmic axis
and search time jumps up more substantially for the
contrast step from 0.125 to 0.25.
Najemnik & Geisler (2005) measured search perfor-

mance for 6-cpd targets in 1/f noise as a function of target
and noise contrast, and they found that human perfor-
mance approaches that of the ideal searcher. As can be
seen in Figure 9, the absolute performance level of the
human observers in the present experiment also
approaches optimal for the conditions with the 6-cpd
target. Thus, this study extends the previous finding of a
close match between human and ideal search performance
to a wider range of conditions.

For the conditions with the 4-cpd target, human
performance is somewhat poorer than ideal (although
human and ideal roughly parallel each other). Similarly,
for the conditions with 1- and 2-cpd targets, human
performance is poorer than ideal. We do not show these
latter predictions because under these circumstances, the
ideal searcher rarely makes more than one fixation.
Figure 7 shows that the number of fixations for the human
observers increases from approximately 1.0 at the lowest
noise contrast (0.03) to 2.0 for the highest noise contrast
(0.25). One possible explanation for this is that humans
are less efficient at searching for lower frequency targets.
Another possibility is that our estimates of the visibility
maps for the low-frequency targets are less accurate. As
described in the Methods section and in Appendix B, the
visibility maps are likely to be fairly accurate for the
conditions where the target is 6 cpd because we
(Najemnik & Geisler, 2005) directly measured the
visibility maps in a very similar experiment for observer
W.S.G. The maps for the lower target frequencies are
likely to be less accurate because they were extrapolated
from the 6-cpd maps. This is a plausible explanation
because we have found that relatively small changes in
the visibility maps can have substantial effects on search
performance (Najemnik & Geisler, 2005). We made
some follow-up measurements in the fovea to test this

Figure 7. Median number of fixations to find the target for correct trials. Circles, M.E.W.; triangles, W.S.G.; curves, average of the two
observers.
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Figure 9. Comparison of human and ideal search performance. Circles, W.S.G. and M.E.W. combined. Curves, ideal searcher.

Figure 8. Eye movement statistics for the two observers. (A) Relationship between average fixation duration and average number of
fixations to find the target (average correlation = .91). (B) Relationship between average fixation distance from the center of the display
and average number of fixations (average correlation = .93). (C) Relationship between the variance and the average number of fixations
(average correlation = .96). (D) Relationship between average saccade length and average number of fixations (average correlation =
j.21). (Note that all the axes are logarithmic and that the correlations are for log values.)
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hypothesis and found that, indeed, our extrapolated
maps for the lower frequencies underestimate the effect
of noise masking (Najemnik & Geisler, unpublished
observations).
Figure 10 compares the eye movement statistics of the

ideal searcher with those of the human observers. As
expected, the ideal searcher does not display an increase
in fixation length with increasing task difficulty, as
indexed by the average number of fixations to find the
target (see Figure 10A). The only mechanism the ideal
searcher has for increasing fixation duration is to hold
fixation for more than one fixation interval (the fixation
interval is set to the average human fixation duration); it
does this only very rarely because there is generally more
information to gain by moving the eyes to a new location.
Figure 10B shows that the average fixation distance from
the center of the display increases in a similar fashion for
human and ideal searchers, as a function of the average
number of fixations. For all conditions, humans tend to
fixate on average closer to the center of the display than
optimal, although the modal distance for human and ideal
is approximately the same (Najemnik & Geisler, 2005).
The variance in the number of fixations increases similarly
for human and ideal searchers (see Figure 10C). Note that
random serial search with replacement predicts similar

behavior (a geometric distribution for number of fixa-
tions), although the random searcher’s performance is
much poorer than human or ideal. For the ideal searcher,
mean saccade length increases rapidly and then decreases
gradually as a function of number of fixations, whereas for
human searchers, it decreases gradually (Figure 10D). The
rapid rise in saccade length for the ideal is presumably due
to two factors: (1) the first saccade is from the middle of
the display and, hence, is more restricted in length, and (2)
at least for the first saccade, the larger visibility maps in
the easier conditions tend to push the fixation location
where the maximum information is gained toward the
center of the circular search region.
Figures 9 and 10 show that human searchers are similar

in many ways to an ideal searcher. They are less efficient
than ideal for some of the easiest search conditions, but
overall, they perform very well. To perform so well,
human searchers must perform efficient parallel process-
ing across the search area on each fixation, they must
select fixation locations with high efficiency, and they
must have inhibition of return (Najemnik & Geisler,
2005).
The average distance of fixations from the center of the

display and the average saccade length of human
searchers differ somewhat from those of the ideal

Figure 10. Comparison of human and ideal eye movement statistics for target spatial frequencies of 4 and 6 cpd.
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searcher. However, the fact that human and ideal search
times are similar suggests that these non-ideal eye move-
ment behaviors are not critical for efficient search.
At first thought, it is rather surprising that humans

perform so well in extended visual search tasks, given
that they have relatively poor memory for image
details and poor ability to integrate image information
across fixations (Hayhoe, Bensinger, & Ballard, 1998;
Irwin, 1991; Rensink, 2002). However, by analyzing
suboptimal searchers, we have shown that memory for
image details and ability to integrate across fixations add
relatively little to search performance. More important is
having a memory system sufficient to support inhibition of
return. In other words, it is not necessary to remember
Bwhat I’ve seen,[ but it is essential to remember Bwhere
I’ve been.[
Figure 6 shows that when the target was 6 cpd, even a

very mild level of display foveation (e.g., (2 = 6 deg) was
sufficient to cause a reliable increase in search time. This
level of display foveation was subjectively invisible for
medium and low noise contrasts. This is not surprising
given that the gaze-contingent displays were free of
artifacts and that the half-resolution eccentricity for the
human visual system is approximately 2.3 deg. The fact
that accentuating the human falloff in resolution by a
small amount causes a significant drop in performance
confirms the conclusion from the ideal-observer analysis
that peripheral information is being used efficiently in
guiding eye movements. This is quite different from
reading tasks (McConkie & Rayner, 1975), where periph-
eral information plays little role, but is qualitatively
consistent with other analyses of peripheral information
use in search (Eckstein et al., 2001; Rajashekar et al.,
2002).
Our subjects’ impression that a gaze-contingent display

(2 of 6 deg often produced an undetectable level of blur is
consistent with the recent blur-detection experiments of
Loschky, McConkie, Yang, & Miller (2005), who report
that blur is undetectable when (2 = 6 deg and only
detectable 5% of the time when (2 = 3 deg. However, their
study used a divided attention task, which may have
underestimated sensitivity to blur. Nonetheless, their
results in conjunction with ours suggest that even when
blur goes unnoticed in the periphery, it can affect
sensitivity for detecting peripheral targets and, hence,
affect search performance.
We have demonstrated that it is possible to generate

clean gaze-contingent displays on conventional PCs using
conventional software (C++ or MatLab) and that this
technology holds considerable promise for rigorously
analyzing the role of peripheral information in complex
extended tasks that involve eye movements.
The rather surprising finding of this study and of

Najemnik & Geisler (2005) is that humans are very
efficient at visual search in complex naturalistic back-
grounds and that many human eye movement statistics
parallel those of the ideal searcher. But how general are

these results and how representative are they of natural
search in the natural environment?
In our paradigm, the target was always present some-

where in the display. Thus, the task is similar to searching
the ground for a dropped object or searching a stand of
foliage for an animal whose presence is known from, say,
a sound. However, in many natural search tasks, there is
uncertainty about whether the sought-after object is
present at all. This adds a level of complexity not
addressed in the current task, namely, deciding when to
give up the search and conclude the target is absent. Ideal
search predictions for this case can be derived within our
theory simply by setting the visibility (d ¶) of an imaginary
target location to zero (or near zero) and giving this
location a prior probability corresponding to the proba-
bility of a target absent trial. (Note that the posterior
probability of the Btarget absent[ location climbs during
the search as other locations are ruled out.) It remains to
be seen how efficient humans are in this task; however,
because of the greater memory demands in target absent
trials, humans may be less efficient, especially under
conditions where the target it relatively difficult to detect.
Our search paradigm and ideal searcher theory are

restricted in other ways. For example, the search region
consists of just one kind of texture (albeit one that is
similar in complexity and amplitude spectrum to regions
of natural images) and there is only one search target of
one type. We are currently working on extending the ideal
searcher theory to allow multiple texture regions and
possible targets. These extensions together with gaze-
contingent display technology may lead to a better
understanding of the processing requirements in more
complex and natural search tasks and may help to identify
the search strategies/mechanisms humans use under these
circumstances.

Appendix A

The algorithm used to compute fixation points from eye
positions was a modified version of one used by the
Applied Science Laboratories Series 5000 data-analysis
software. The input to the algorithm is a list of eye
position samples, P[1], I, P[N], and the output is a list of
fixation points, F. Initially, list F and a working list T are
set to be empty, and an index i is set to 0. Also, we note
that P¶ is a temporary list that accumulates all the eye
positions corresponding to a given single fixation. The
algorithm proceeds as follows:

1. If i exceeds N, the algorithm ends. Otherwise,
compute the centroid C of eye positions P[i], P[i +
1], I, P[i + k], such that P[i + k] is the last eye
position that occurs less than 75 ms after P[i]. If
there is not 75 ms worth of eye positions following
P[i], the algorithm ends.
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2. If the standard deviation of the distances of P[i],
P[i + 1],I, P[i + k] from C is greater than a degrees,
P[i] is not the beginning of a fixation; thus, ignore
this eye position by setting i = i + 1; continue at 1.

3. If the standard deviation of the distances of P[i],
P[i + 1], I, P[i + k] from C is less than a degrees,
P[i] is the beginning of a fixation; hence, save these
k + 1 eye positions in a list P¶, and set i = i + k + 1.

4. If the distance from P[i] to C is less than b degrees,
add P[i] to P¶. Set i = i + 1. If i does not exceed N,
continue at 4; otherwise, compute the mean of the
eye positions in P¶ and add it to a list of fixations F;
the algorithm ends.

5. If the distance from P[i] to C is greater than c
degrees, compute the mean of the eye positions in P¶
and add it to a list of fixations F; continue at 1.

6. If the distance from P[i] to C is less than c degrees
and greater than b degrees, clear the list T of
potential fixation eye positions.

7. If i exceeds N, compute the mean of the eye
positions in P¶ and add it to a list of fixations F;
the algorithm ends. Otherwise, add P[i] to the list T.
Set i = i + 1. If the time difference between the first
and last eye positions in T is less than 50 ms,
continue at 7.

8. Compute the mean of the eye positions in T. If this
mean is less than b degrees from C, add this mean
eye position to P¶ and clear the list T; continue at 4.
Otherwise, compute the mean of the eye positions in
P¶ and add it to the list of fixations F; continue at 1.

In this study, we set a = 0.1 deg, b = 0.2 deg, and c =
0.3 deg.

Appendix B

In a simple detection task with no uncertainty and a
sinusoidal (Gabor) target, an ideal observer computes the
cross correlation of a matched Gabor template with the
stimulus at the known target location and responds that
the target is present, if the cross correlation exceeds a
criterion. Under fairly general conditions, the detection
performance of this ideal observer, when limited by
external and internal noise, can be described by the signal
to noise ratio (d ¶):

d ¶ c; en; (ð Þ2 ¼ c2

! en þ " c; en; (ð Þ ; ðB1Þ

where c is the rms contrast of the target (i.e., c2 is the
contrast power), en is the stimulus noise contrast power,
and ( is the eccentricity in degrees (see Supplement to
Najemnik & Geisler, 2005). (We note that d ¶ is monotoni-
cally related to the proportion of correct responses in the
detection task.)

The value of the constant ! is a function of the narrow
band of background noise that affects the responses of the
target-matched template, and it can be estimated by
measuring the mean and the variance of the template
responses to a large number of samples of the target
embedded in the actual background noise used in the
experiments. The value of ! is approximately 0.022.
In the gaze-contingent display, the transfer function at

each eccentricity will attenuate both the target and the
relevant narrow band of the noise background by an equal
factor, and thus,

d ¶ c; en; (; fð Þ2 ¼ jT f ; (ð Þj2c2

! jT f ; (ð Þj2en þ " c; en; (ð Þ

or

d ¶ c; en; (; fð Þ2 ¼ c2

!en þ " c; en; (ð Þ=jT f ; (ð Þj2
; ðB2Þ

where T( f, () is given by substituting Equation 3 into
Equation 2.
Consistent with Equation B1 and the literature on noise

masking (e.g., Burgess et al., 1981; Pelli & Farell, 1999),
Najemnik and Geisler (2005) found that the slope and
intercept of the noise masking functions measured at
different eccentricities for a 6-cpd target are described by
a linear equation of the form:

c2T en; (ð Þ ¼ a (ð Þen þ b (ð Þ; ðB3Þ

where cT is the contrast threshold for the detection. Fur-
thermore, we found that the slopes and intercepts of these
linear functions vary systematically with eccentricity:

ln a (ð Þ½ � ¼ ma(þ ba ðB4Þ

and

ln b (ð Þ½ � ¼ mb(þ bb: ðB5Þ

Finally, we found that the steepness parameter of the
psychometric functions (Weibull functions) varied sys-
tematically with eccentricity:

s (ð Þ ¼ 2:8(

(þ 0:8
þ 2: ðB6Þ

To generalize these results to the current experiment,
we first make use of the fact that the logarithm of the
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masking function intercept is linear with eccentricity
(Equation B5). This fact is consistent with a well-known
formula for the human contrast sensitivity function. In the
absence of a noise background, the human CSF for brief
stimulus presentations is well approximated by

cs ¼ cs 0ð Þexp jkf
e2 þ (

e2

� �
; ðB7Þ

where cs(0) is the contrast sensitivity in the fovea, k is a
constant whose value is typically in the neighborhood of
0.1, f is spatial frequency in cpd, and e2 is the half-
resolution eccentricity, which is typically around
2.0 –2.5 deg (see, e.g., Geisler & Perry, 1998). Writing
Equation B7 in terms of the threshold contrast power, we
have

c2T ¼ b20exp 2kb f
e2 þ (

e2

� �
; ðB8Þ

where b0 is the threshold contrast in the fovea at zero
spatial frequency. Therefore, we predict from Equation B8
that ln[b(()] should be a linear function of eccentricity:

ln b (ð Þ½ � ¼ 2kb f

e2
(þ 2kb f þ 2ln b0½ �: ðB9Þ

Setting e2 to a representative value from the literature
(e2 = 2.3 deg), we can estimate kb and b0 by setting
Equation B9 equal to Equation B5: kb = 0.168, b0 =
0.0295. To generate estimates of the slopes of the
masking functions for other spatial frequency targets, we
assume that an equation similar to Equation B9 holds for
slopes:

ln a (ð Þ½ � ¼ 2ka f

e2
(þ 2ka f þ 2ln a0½ �: ðB10Þ

Setting Equation B10 equal to Equation B4, we find that
ka = 0.088 and a0 = 0.44.
Equations B9 and B10 are guaranteed to be consistent

with the masking functions we have measured for 6-cpd
targets, and they can be used to provide estimates of the
intercepts and slopes for other target spatial frequencies.
Finally, we assume that the steepness parameters of the
psychometric functions for all spatial frequencies are the
same as they are for 6-cpd targets (Equation B6).
Obviously, there is potential for error here, and thus, the
ideal searcher predictions shown here are most trust-
worthy for the 6-cpd target.
To generate estimates of the visibility maps, we use the

estimated masking functions and psychometric function
slopes to directly compute values of d ¶ for each point in
the display relative to the current point of fixation. We

substitute these d ¶ values into Equation B1 to estimate the
equivalent internal noise power "(c,en,() in the unfoveated
display. The equivalent internal noise power in the
foveated display is obtained by dividing "(c,en,() by the
square of the foveated transfer function (see Equations 2,
3, and B2). The equivalent external noise power is
obtained by multiplying the contrast noise power by the
estimated constant !. In simulating ideal search perfor-
mance, the external noise was taken to be static noise and
the internal noise was taken to be dynamic noise that was
statistically independent in space and time. For more
details, see Najemnik and Geisler (2005).
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